p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.78D4, C25.10C22, C24.173C23, C24⋊1(C2×C4), C22⋊C4⋊30D4, (C22×D4)⋊7C4, C24⋊3C4⋊3C2, C22.49(C4×D4), C22⋊1(C23⋊C4), C23.568(C2×D4), C23.9D4⋊8C2, C22.29C22≀C2, C23.120(C4○D4), C22.47(C4⋊D4), C23.192(C22×C4), (C22×D4).26C22, C23.124(C22⋊C4), C2.37(C23.23D4), C22.27(C22.D4), (C2×C22⋊C4)⋊4C4, (C2×C23⋊C4)⋊5C2, (C22×C4)⋊1(C2×C4), C2.27(C2×C23⋊C4), (C2×C22≀C2).2C2, (C22×C22⋊C4)⋊2C2, (C2×C22⋊C4).12C22, C22.273(C2×C22⋊C4), SmallGroup(128,630)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.78D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=d, faf-1=ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=cde-1 >
Subgroups: 788 in 299 conjugacy classes, 60 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C23, C22⋊C4, C22⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C24, C23⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C22≀C2, C23×C4, C22×D4, C22×D4, C25, C23.9D4, C24⋊3C4, C2×C23⋊C4, C22×C22⋊C4, C2×C22≀C2, C24.78D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C23⋊C4, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C23.23D4, C2×C23⋊C4, C24.78D4
(9 14)(10 15)(11 16)(12 13)
(1 3)(2 4)(5 8)(6 7)(9 14)(10 15)(11 16)(12 13)
(1 5)(2 7)(3 8)(4 6)(9 12)(10 11)(13 14)(15 16)
(1 4)(2 3)(5 6)(7 8)(9 11)(10 12)(13 15)(14 16)
(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 14 4 16)(2 11 3 9)(5 15 6 13)(7 12 8 10)
G:=sub<Sym(16)| (9,14)(10,15)(11,16)(12,13), (1,3)(2,4)(5,8)(6,7)(9,14)(10,15)(11,16)(12,13), (1,5)(2,7)(3,8)(4,6)(9,12)(10,11)(13,14)(15,16), (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,14,4,16)(2,11,3,9)(5,15,6,13)(7,12,8,10)>;
G:=Group( (9,14)(10,15)(11,16)(12,13), (1,3)(2,4)(5,8)(6,7)(9,14)(10,15)(11,16)(12,13), (1,5)(2,7)(3,8)(4,6)(9,12)(10,11)(13,14)(15,16), (1,4)(2,3)(5,6)(7,8)(9,11)(10,12)(13,15)(14,16), (5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,14,4,16)(2,11,3,9)(5,15,6,13)(7,12,8,10) );
G=PermutationGroup([[(9,14),(10,15),(11,16),(12,13)], [(1,3),(2,4),(5,8),(6,7),(9,14),(10,15),(11,16),(12,13)], [(1,5),(2,7),(3,8),(4,6),(9,12),(10,11),(13,14),(15,16)], [(1,4),(2,3),(5,6),(7,8),(9,11),(10,12),(13,15),(14,16)], [(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,14,4,16),(2,11,3,9),(5,15,6,13),(7,12,8,10)]])
G:=TransitiveGroup(16,230);
(5 15)(6 16)(7 13)(8 14)
(1 3)(2 4)(5 15)(6 16)(7 13)(8 14)(9 11)(10 12)
(1 3)(2 10)(4 12)(5 7)(6 16)(8 14)(9 11)(13 15)
(1 11)(2 12)(3 9)(4 10)(5 13)(6 14)(7 15)(8 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 13 11 5)(2 6 12 14)(3 7 9 15)(4 16 10 8)
G:=sub<Sym(16)| (5,15)(6,16)(7,13)(8,14), (1,3)(2,4)(5,15)(6,16)(7,13)(8,14)(9,11)(10,12), (1,3)(2,10)(4,12)(5,7)(6,16)(8,14)(9,11)(13,15), (1,11)(2,12)(3,9)(4,10)(5,13)(6,14)(7,15)(8,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,13,11,5)(2,6,12,14)(3,7,9,15)(4,16,10,8)>;
G:=Group( (5,15)(6,16)(7,13)(8,14), (1,3)(2,4)(5,15)(6,16)(7,13)(8,14)(9,11)(10,12), (1,3)(2,10)(4,12)(5,7)(6,16)(8,14)(9,11)(13,15), (1,11)(2,12)(3,9)(4,10)(5,13)(6,14)(7,15)(8,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,13,11,5)(2,6,12,14)(3,7,9,15)(4,16,10,8) );
G=PermutationGroup([[(5,15),(6,16),(7,13),(8,14)], [(1,3),(2,4),(5,15),(6,16),(7,13),(8,14),(9,11),(10,12)], [(1,3),(2,10),(4,12),(5,7),(6,16),(8,14),(9,11),(13,15)], [(1,11),(2,12),(3,9),(4,10),(5,13),(6,14),(7,15),(8,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,13,11,5),(2,6,12,14),(3,7,9,15),(4,16,10,8)]])
G:=TransitiveGroup(16,237);
(1 4)(2 3)(5 7)(6 8)
(1 4)(2 3)(5 7)(6 8)(9 15)(10 16)(11 13)(12 14)
(1 5)(4 7)(9 11)(13 15)
(1 5)(2 6)(3 8)(4 7)(9 11)(10 12)(13 15)(14 16)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)
(1 12 5 10)(2 9 6 11)(3 15 8 13)(4 14 7 16)
G:=sub<Sym(16)| (1,4)(2,3)(5,7)(6,8), (1,4)(2,3)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14), (1,5)(4,7)(9,11)(13,15), (1,5)(2,6)(3,8)(4,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,12,5,10)(2,9,6,11)(3,15,8,13)(4,14,7,16)>;
G:=Group( (1,4)(2,3)(5,7)(6,8), (1,4)(2,3)(5,7)(6,8)(9,15)(10,16)(11,13)(12,14), (1,5)(4,7)(9,11)(13,15), (1,5)(2,6)(3,8)(4,7)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16), (1,12,5,10)(2,9,6,11)(3,15,8,13)(4,14,7,16) );
G=PermutationGroup([[(1,4),(2,3),(5,7),(6,8)], [(1,4),(2,3),(5,7),(6,8),(9,15),(10,16),(11,13),(12,14)], [(1,5),(4,7),(9,11),(13,15)], [(1,5),(2,6),(3,8),(4,7),(9,11),(10,12),(13,15),(14,16)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16)], [(1,12,5,10),(2,9,6,11),(3,15,8,13),(4,14,7,16)]])
G:=TransitiveGroup(16,249);
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2M | 2N | 2O | 2P | 4A | ··· | 4H | 4I | ··· | 4O |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | C4○D4 | C23⋊C4 |
kernel | C24.78D4 | C23.9D4 | C24⋊3C4 | C2×C23⋊C4 | C22×C22⋊C4 | C2×C22≀C2 | C2×C22⋊C4 | C22×D4 | C22⋊C4 | C24 | C23 | C22 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 |
Matrix representation of C24.78D4 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,4,0,0,0,0,0,0,1,0,0] >;
C24.78D4 in GAP, Magma, Sage, TeX
C_2^4._{78}D_4
% in TeX
G:=Group("C2^4.78D4");
// GroupNames label
G:=SmallGroup(128,630);
// by ID
G=gap.SmallGroup(128,630);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,2019,1018,2028]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=d,f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^-1>;
// generators/relations